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PROBLEM STATEMENT 

The output of a Gamma Ray detector is quantized using a 14 bit A/D 
converter. The number of each of the 214 or 16,384 levels occurring 
in a 30 second interval is counted. In effect, a histogram of the 
gamma ray events is obtained with 16,384 bins. The contents of these 
bins are to be encoded without distortion and transmitted at a rate 
less than or equal to 600 bits per second. Thus the contents of the 
16,384 bins are to encoded using 18000 bits. The encoder should be 
simple to implement and require only a minimal amount of buffering. 

PROPOSED SYSTEM 

Encoder 

The contents of the bins are treated as a sequence for purposes of 
encoding. The proposed system encoder can be divided into two stages 
(three if a Huffman coding option is used. The first 
stage is a leaky differencer whose input/output relationship is given 

See Figure 1.) 

by 

where [t] is the largest integer less than or equal to t. The reason 
for using a leaky differencer is to allow the effect of errors to die 
out with time. 
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The output of the differencer forms the input for the second stage 
which is a modified runlength encoder. The encoder codebook contains 
six different types of symbols. 

Mn - symbol used to represent negative differencer 
output values, for example, the differencer 
output values -1, -2,...,-n, are represented 
by the symbols M1, M2, ..., Mn, respectively. 

Pn - symbols used to represent positive differencer values, 

they are coded similar to the Mn symbols. Thus a 
differencer output value of +3  would be represented by the 
symbol P3. 

Zn - symbols used to represent string of zeros of 
length n. Since the number of Z-symbols is 
kept small, these symbols represent I1short1l 
string of zeros (0-strings), while the SO- and 
S1-symbols to be introduced later represent 
lllongll 0-strings. 

BR - In the encoding scheme that follows, there 
will sometimes be a need to specify the end of 
a sequence. The BR or break symbol is used 
for this purpose. 

SOXX - symbol used to represent long 0-strings. The 
SO symbol indicates that a 0-string is being 
represented while X stands for a four bit 
word. XX is thus an eight bit word specifying 
the length of the 0-string. 

SlXX - symbol used to represent long 0-strings that 
are followed by a 1. It is constructed in the 
same manner as the SOXX symbol. 
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Each symbol, Mn, Pn, Zn, BR, SO, and S1 is represented by a four bit 
word. The number of symbols in the encoder codebook is 
o (M) +o (P) +o ( Z )  +3 where o (M) , o (P) , and o ( Z )  are, respectively, the 
number of negative source symbols, positive source symbols, and short 
0-strings symbols to be channel coded. As each symbol is represented 
by 4 bits, a total of sixteen encoder symbols are possible. In our 
coding scheme, o(M) is set to 2, o ( Z )  to 6 ,  and o(P) to 5. 

This means that if the differential output is -1, -2, 1, 2, 3, 4, 5 or 
a string of zeros of length five or less, it can be represented by a 
single symbol. What if the differential output is a positive value 
larger than five or a negative value less than -2? In such cases the 
largest (in magnitude) Mn or Pn symbol is used as a concatenation 
symbol. A s  an example, consider encoding the value 18. 

Since o(P) is 5, the largest positive value that can be coded with a 
single symbol is 5. If P5 is also used as a concatenation symbol, 
larger source values can be coded. In this case, 18 can be coded as 
P5 P5 P5 P3. The receiver accumulates a total f o r  all the P5 symbols 
consecutively received until a non-P5 symbol is received. This symbol 
is used to complete the current source value. In this case, P3 
indicates the source value is 18. 

In the case where the source value is a multiple of the maximum P- 
symbol value some confusion can occur in the decoding process. 
Consider the coding of the source values 10 followed by 8 .  In this 
case, four source symbols are required to code these values but, the 
receiver decodes them as a 18. To overcome this problem the break 
symbol (BR) is used. This symbol carries no data value but, is used 
by the receiver to prematurely stop the accumulation of P-symbols. 
Specifically, 10 and 8 are coded as P5 P5 BR P5 P3. The receiver 
stops constructing the first source value when the BR is encountered 
and start constructing the next with the following P5 symbol. 
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If a source value to coded is negative, the above procedure is used 
with the allowed M-symbols along with the BR symbol to prevent 
incorrect receiver decoding. For example, -3 would be encoded as M2M1 
and -4 would be encoded as M2M2BR. 
In this particular application, the tails of a given signal frame 
contain long runs of zeros that are separated by non-zero data 
values. It is very likely that these 0-string separators take the 
value 1. Thus, it is beneficial to code these runs with one of the 
following two symbols, each of which is three code words in length: 

SO x y a 0-string of length xy (base 16). 

S1 x y a 0-string of length xy (base 16) followed a 1. 

For example, the symbol, SO 4 0, represents a string of 64 Os, and the 
symbol, S1 4 0, represents a string of 64 Os followed by a 1. If the 
separating data value is not 1, then additional source symbols follow 
the SO symbol to complete the description of its value. The maximum 
length of 0-string that can be coded with this type symbol is 255 (FF 
base 16). If a string of length greater than 255 is encountered, a 
concatenation rule must be applied. 

Since the symbols SO 0 0 and S1 0 0 are not assigned, they are used as 
0-string concatenation symbols. They are used to indicate the fact 
that a 0-string is to be built whose length is greater than 255. Each 
time one of these symbols is used it is assumed that a 0-string of 
length greater than 255 is being coded, and additional information is 
to be provided on its length by the following symbols. A 0-string is 
terminated if the last SO-symbol indicates a length value other than 

I 00 for xy. 

For example, if a 0-string of length 300 is followed by a 1, two 
source symbols (six channel words) are required to code the string: S1 
0 0 S1 2 D. The value for xy of the first symbol is 00, so the 0- 
string is continued using the following S1-symbol(s). In this way, 0- 
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strings of arbitrary length can be constructed by concatenating as 
many S1 0 0 symbols as needed to bring the overall reconstructed 0- 
string length to within 255 Os of its full length. The final S1- 
symbol in such a series which does not have a 0 0 length indicator 
terminates the 0-string concatenation process. Since the S1 symbol is 
being used this 0-string is automatically followed by a 1. Consider 
coding a 0-string of length 300 that is followed by a -1. Two SO- 
symbols (six channel words) are required to code the 0-string, and 
one M-symbol (one channel word) is required to code the -1: SO 0 0 SO 
2 D M1 for a total of seven channel words. 

Since the long runlength symbols require three channel words each, an 
excessive amount of channel capacity can be wasted when coding short 
runs of Os. As a consequence, a group of short run symbols that use 
only one channel word each are used to alleviate this problem. The 
identifier for these symbols is Zn (where n represents the length of 
the 0-string). For example, a run of 5 Os is represented by the 
symbol 25. The coding length of a short 0-string using Zn symbols 
only improves the overall coding rate if the short 0-string is coded 
with fewer channel bits when using the 2-symbols instead of the SO- 
and S1-symbols. 

Consider the following example for coding a string of 10 Os. Since 
o ( Z )  is 6, to code this 0-string using Z-symbols takes two channel 
words: Z6 2 4 .  But, when coded using an SO-symbol it takes three 
channel words to code this 0-string: SO 0 A .  Therefore, the 2-symbol 
coding is more channel efficient. Since an SO- (or S1-) symbol always 
require three channel words, the only way to guarantee that short 0- 
strings are coded efficiently is to set the maximum number of short Z- 

symbols in a single 0-string coding to two. Thus, for an o(2) of 6, 
the maximum 0-string length to be 2-symbol coded is 12. 

The encoder described above has two main characteristics. First, it 
has been designed for the specific task noted in the problem 
statement. No claims are made regarding its suitability for other 

241 



tasks. The second characteristic is its simplicity. The encoding 
operation requires a very small amount of computation. Furthermore, 
the onboard memory requirements for buffering are minimal. 

If Huffman coding is to be used, the final stage of the encoder is a 
Huffman coder. This will, of course, increase the complexity of the 
encoder and may make the system more vulnerable to channel errors. 
Therefore, if at all possible we will avoid using a Huffman coder. 

Decoder 

The decoder for the proposed system consists of three stages. The 
first stage of proposed system decoder is maximum A Priori Probability 
(MAP) receiver(6). The MAP receiver design is based on the assumption 
that the output of the encoder contains dependencies. 

The MAP design criterion can be formally stated as follows: For a 
discrete memoryless channel (DMC) , let the channel input alphabet be 
denoted by A = {aOfa1,...,aM-1), and the channel input and output 

respectively. If A = {Ai) is the set of sequences A i  = 

(ai,o,ai,l ,...,ai,~-l},ai,k~, then the optimum receiver (in the sense 
of maximizing the probability of making a correct decision) maximizes 
P[C], where 

sequences by Y = (yo,yl,...,y~-1) and p = ~9of9lf*-.f9L-l~, 

pic1 = zi P[CI PIP[Pl 
This in turn implies that the optimum receiver maximizes P[C(P]. When 
the receiver selects the output to be Ak, then P[C( P] = P[Y = Akl PI. 
Thus, the optimum receiver selects the sequence Ak such that 

When the channel input sequence is independent, this simplifies to the 
standard MAP receiver(6). Under conditions where this is not true, 
the receiver becomes a sequence estimator which maximizes the path 
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metric. Z10gP(yilpi,yi-1)(5). The path metric can be computed for a 
particular system by rewriting it using the following relationship . (4) 

Notice that the right hand side consists of two sets of conditional 
probabilities {P[pilyi]} and (P[yilyi-1]). The first set of 

conditional probabilities are the channel transition probabilities 
while the second depend only on the encoder output. The two are 
combined according to the above relationship to construct an M X M X M 
lookup table for use in decoding. The structure of the MAP receiver 
is that of the Viterbi de~oder(~r~). 

The second stage of the decoder is the inverse operation of the 
modified run-length encoder. The operation of this stage has already 
been described in the previous section. The final stage of the 
decoder is the inverse of the differential operation with an input 
output relationship 

Xn = Zn + [axn-l] 

RESULTS 

In this section we present results obtained by using the proposed 
system of the previous section. Ms.\ 
M. Mingarelli-Armbruster of the Goddard Space Flight Center.' This 
data was generated according to a Poisson distribution where the 
Poisson parameter was obtained from ten hours of lunar data. Both 
noisy and noiseless channel performance of the proposed system were 
examined via Monte-Carlo simulation. A total of twenty, 30-second 
intervals were used in the tests. The performance was compared with 
the Rice algorithm ( 1-3) . 

The data used was provided by 

Before proceeding with the results, some caveats are in order. First, 
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the name Rice algorithm is a misnomer. What is ~resented(l-~) is not 
an algorithm but an approach. In this approach, a suite of algorithms 
is used to encode sections of the data, and the most efficient 
algorithm for that particular section of data is selected. In this 
way, data with very different statistical profiles can be 
accommodated. Thus what is presented could more correctly be 
called the Rice Universal Coding Approach (RUCA). What we compare 
against here are algorithms pre~ented(l’~) as examples of the RUCA. 
These algorithms were constructed for use in very general situations. 
As opposed to this, the particular algorithm presented here has been 
designed for a specific task. A final observation is that the encoder 
presented in this paper could very easily be used as the first stage 
of the RUCA. However, this would result in a rather complex encoder 
and substantial increase in the need for onboard memory over the 
proposed design. Therefore, if the algorithm presented in the 
previous section satisfies the requirements in terms of rate and 
robustness, such a step would be undesirable. 

The results of the tests with both algorithms are presented in Table 1 
and Table 2. The number of bits required to code twenty thirty-second 
intervals and the average rate needed for both algorithms is presented 
in Table 1. The second and third columns contain the total number of 
bits and the rate when the Rice algorithm is used. The average rate 
over twenty intervals is 719 bits per second. Columns three to six 
present the results obtained by using the proposed algorithm. The 
first two columns contain the results for the case where the Huffman 
coder was not used while the last two columns contain the results for 
when the Huffman coder formed the last stage of the encoder. The rate 
without the Huffman coder averaged over twenty intervals is 595 bits 
per second while the average rate when the Huffman coder is used is 
522  bits per second. These results indicate that the proposed system 
will satisfy the specifications (coding rate below 600 bits per 
second) both when the Huffman coder is used and when it is not. As 
both systems meet the target and as the inclusion of the Huffman coder 
increases both the complexity and the vulnerability of the system to 
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channel noise, we elected to use the system without the Huffman coder. 

Table 2 provides the performance of the algorithms under noisy channel 
conditions. Three performance measures are used, namely, mean squared 
error (MSE), mean absolute error (MAE), and the number of decoded 
values which are in error. Note the very large difference between the 
performance of the Rice algorithm and the proposed algorithm. Also, 
the proposed algorithm maintains a robust performance at extremely 
high error rates. In fact, under even highly adverse conditions the 
mean squared error is almost constant, and the number of erroneous 
decoded values is about 25% of the total. However, the performance 
of the algorithms at high error rates may be irrelevant in this 
particular situation. The reason being that the transmitted data will 
be well protected by a channel coding scheme consisting of a Reed- 
Solomon coder followed by a convolutional coder. This combination is 
expected to keep the average probability of error on the coded channel 
below 9 X 

Finally, we examine the relative complexity and buffer requirements 
for the two algorithms. The proposed algorithm can be easily realized 
with a simple program implemented using a microprocessor. Based on 
the memory requirements for the simulation program used in this study, 
the memory needed for actual implementation should be about 1 K. The 
only time buffering may be required is when a large differencer output 
is encountered, and the encoder has to generate several channel 
symbols for one input. Depending on the way the entire system is 
implemented, the buffer requirements could range from a single symbol 
buffer to perhaps a sixteen symbol buffer. 

A s  opposed to this, the Rice algorithm by its very nature, being a 
universal coding algorithm, is quite complex. Each block of data is 
encoded using a number of candidate algorithms; the algorithm which 
provides the most efficient encoding is then selected. Each of the 
candidate algorithms is itself relatively complex though some very 
ingenious techniques are used to make subunits of one algorithm common 
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I to several candidate algorithms. Because several passes are required 
to do the encoding, the buffering requirements for this approach are 
substantial. 

These differences in complexity are very natural based on the 
different objectives of the two algorithms. The proposed system is 
designed for a very specific situation while the Rice algorithm is 
designed to handle general situations. 
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I TABLE 1 

Coding rates with the Rice Algorithm and the Proposed Algorithm, (HC) 
denotes the results for the case where the Huffman Coder was used. 

RICE ALGORITHM 
INTERVAL TOTAL RATE 

BITS 

1 21,647 
2 21,385 
3 21,530 
4 21,562 
5 21,666 

I 

~ ' I 6 21,424 
7 21,841 
8 21,630 
9 21,719 
10 21,568 
11 21,308 
12 21,509 
13 21.633 
14 21,822 
15 21,296 
16 21,701 
17 21,058 
18 21,312 
19 21,713 

I 

~ 20 21,888 

721.6 
712.8 
717.7 
718.7 
722.2 
714.1 
728.0 
721.0 
723.9 
718.9 
710.3 
716.9 
721.1 
727.4 
709.8 
723.4 
701.9 
710.4 
723.8 
729.6 

718.7 

PROPOSED ALGORITHM 
TOTAL RATE TOTAL BITS RATE 
BITS (HC) (HC) 

17 , 832 
17.528 
17 , 784 
17 , 840 
18 , 144 
17 , 504 
18 , 048 
18 , 096 
18,132 
18,096 
17 , 604 
17,728 

18 , 016 
17 , 780 

17 I 564 
17 , 956 
17 , 296 
17 , 688 
18 , 160 
18,292 

594.4 
584.3 
592.8 
594.7 
604.8 
583.5 
601.6 
603.2 
604.4 
603.2 
586.8 
590.9 
592.7 
600.5 
585.4 
598.5 
576.5 
589.6 
605.3 
609.7 

15,733 
15,345 
15,520 
15,691 
15,883 
15,457 
15,882 
15,907 
15,843 
15,695 
15,438 
15,580 
15,581 
15 I 913 
15,361 
15,872 
15,139 
15,449 
16,033 
16,125 

524.4 
511.5 
517.3 
523.0 
529.4 
515.2 
529.4 
530.2 
528.1 
523.2 
514.6 
519.3 
519.4 
530.4 
512.0 
529.1 
504.6 
514.9 
534.4 
537.5 

595.1 522.4 

247 



TABLE 2 
Performance of the algorithms under noisy channel conditions. 

PROBABILITY 
OF ERROR 

10-6 
10-5 
10-4 
10-3 
10-2 

MEAN 
SQUARED 

ERROR 
0.0760 
4.07 

31.49 
479.22 

a ,562 .a7 

RICE ALGORITHM 
MEAN 
ABSOLUTE 

ERROR 
0.023 
0.45 
3.14 
16.03 
76.75 

# OF 
DECODED 

ERRORS 
140 

1,908 
10,177 
15,658 
16,189 

I PROBABILITY 

OF ERROR 
10-6 
10-5 
10-4 
10-3 
10-2 

PROPOSED ALGORITHM 
MEAN MEAN # OF 
SQUARED ABSOLUTE DECODED 

ERROR ERROR ERROR 
2.4 x 10-5 1.2 x 10-5 1 
0.026 0.016 218 
0.17 0.14 1,287 
0.78 0.28 2,944 
6.81 0.71 3 , 765 

SUMMARY AND CONCLUSIONS 

We have presented a robust noiseless encoding scheme for encoding the 
gamma ray spectroscopy data. The encoding algorithm is simple to 

implement and has minimal buffering requirements. The decoder 
contains error correcting capability in the form of a MAP receiver. 
While the MAP receiver adds some complexity, this is limited to the 
decoder. Nothing additional is needed at the encoder side for its 
functioning. 
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